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ABSTRACT

Human chess players prefer training with human opponents over
chess agents as the latter are distinctively different in level and style
than humans. Chess agents designed for human-agent play are ca-
pable of adjusting their level, however their style is not aligned
with that of human players. In this paper, we propose a novel ap-
proach for designing such agents by integrating the theory of chess
players’ decision-making with a state-of-the-art Monte Carlo Tree
Search (MCTS) algorithm. We demonstrate the benefits of our ap-
proach using two sets of analyses. Quantitatively, we establish that
the agents attain their desired Elo ratings. Qualitatively, through a
Turing-inspired test with a human chess expert, we show that our
agents are indistinguishable from human players.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; « Ap-
plied computing — Computer games.
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1 INTRODUCTION

Mastering the game of chess is long believed to require a high
level of intelligence [6]. It therefore comes as no surprise that the
pioneers of Artificial Intelligence (AI) tried to develop computerized
chess agents such as Shannon’s [22] and Turing’s 1951 "Turochamp’
chess playing “agents” [8, Chapter 13] which were written on paper.
Ever since, chess was intensely studied and several algorithms and
heuristics were proposed including significant milestones such as
Slate and Atkin’s Chess 4.5 [26], IBM’s Deep Blue [7] and, most
recently, Deep Mind’s AlphaZero [23].

In contrast to this impressive background of computational ad-
vances, which have already achieved super-human play level since
the 90’s [7], chess playing agents have also been adapted to play
at an adjustable level, allowing for humans of different play levels
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to train with more “appropriate” automated opponents. These ad-
justments are commonly based on heuristics, targeted at limiting
the agent’s capabilities. Unfortunately, according to chess experts,
existing agents still fall short of mimicking human play style (e.g.,
[16, 25, 27]), resulting in many human chess players preferring to
train against human opponents instead of an automated agent in
order to improve their game.

In order to address this shortcoming, we propose a novel ap-
proach for adjusting a chess agent’s play level and style simulta-
neously by shaping its learned policy in a theoretically grounded
manner. Our approach is built on the integration of the established
theory of chess players’ decision-making [9] with the state-of-the-
art Monte Carlo Tree Search (MCTS) algorithm [5], commonly
deployed by modern chess agents (e.g., AlphaZero [23]). Specifi-
cally, given a desired level of play, commonly provided by the Elo
rating system [13], the agent’s optimal play which was learned by
the MCTS algorithm is systematically reshaped to resemble human
play style.

In an extensive empirical evaluation, we demonstrate the benefits
of our approach in three experimental settings: First, we train chess
playing agents for various levels of play. The trained agents are
evaluated via the popular human chess level assessment system
Elometer! [11, 29] and their Elo estimations are consistent with the
intended level of play. Second, we perform a tournament among
the trained agents and show that their win-rate is consistent with
that predicted by their estimated Elo rating. Last, in a Turing test-
inspired human study, with the help of a chess expert and trainer
(Elo rating of ~2100, who does not co-author this paper), we show
that our chess playing agents are indistinguishable from human
players whereas other leading agents are easily identified as non-
human.

2 RELATED WORK

We discuss the two main research aspects of our task: the computa-
tional one and the behavioral one.

2.1 Computational Aspect

Developing game playing agents has been a prominent research
theme in Al from its inception. This research has mainly focused on
the task of achieving the “best” game playing capabilities, resulting
in super-human performance in different game settings such as
Chess [7], Checkers [19], Poker [4], Go [24] and others. Unfortu-
nately, these agents often play in a distinctively different style than
human players [14].

In order to design agents that are capable of playing at a human
style, two methodologies are often deployed: 1) Imitation learning
[28], where the agent trains to mimic human play by replicating
available demonstrations or approximating them using supervised
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learning models; and 2) Domain-specific expert-based heuristics
which are expected to result in a more human-like style (e.g., lim-
iting look-ahead or simulation time, adding random noise to the
agent’s evaluation function, etc.). To the best of our knowledge,
imitation learning was not applied thus far to the game of chess.
This may be attributed to the enormous non-symmetrical state
space of chess which limits the applicability of standard supervised
learning approaches [1]. According to our chess expert, the use of
heuristics brings about low level of play and limited resemblance
to human style. For example, an agent that was tuned for a specific
Elo rating may indeed achieve the desired win-rate, however the
individual moves vary drastically in the level: great moves coupled
with occasional blunders.

Our proposed approach relies on modifying the popular MCTS
algorithm in order to bring about a more human-like play. Similar
efforts were recently made in various game settings such as the
card game Spades [10], Candy Crush Saga [12], and general video
games [15]. Common to these efforts is the heavy reliance on an
imitation learning component that is trained using available human
play data.

As noted before, the use of imitation learning is unsuitable for
the game of Chess. Other recent works in the Lords of War game
[20] and Go [30] have also suggested techniques for biasing the
MCTS action selection towards sub-optimal play. While the pro-
posed techniques do not rely on any human generated data (and
specifically do no use imitation learning), the techniques focus en-
tirely on adjusting the agents’ play with no explicit account for the
agents’ play style. To the best of our knowledge, this is the first
work to explore the integration of human game-playing behavioral
theories with MCTS and the first one to pursue human-like play,
both in terms of level and style, in the game of Chess.

2.2 Behavioral Aspect

The cognitive abilities of Chess players have been studied for over a
century starting from Alfred Binet’s work [3]. In this work, we adopt
the more modern, yet well-established, work of Adrian de’Groot
[9]. De’Groot claims that Chess players’ thought process consists
of two main components: Intuition (also known as orientation), and
Analysis (also known as exploration, investigation and proof) [18].

An extensive evaluation of de’Groot’s finding with human chess
players reveals two phenomena: First, when chess players encounter
a board position they almost immediately notice patterns rather
than starting to expand many possible moves for all chess pieces
(as classic chess agents do), constituting the “intuition” component
of their decision-making. Specifically, more advanced players are
better at recognizing “good” or “promising” patterns rather than
simply performing a “deeper” thought process looking more moves
ahead in the game. Based on their intuition, more advanced players
are also more capable of performing “analysis” — namely, better
exploring their intuition by “simulating” possible game traces in
their mind.

In a similar fashion, the deep neural network used in Alpha
Zero [23] provides an initial estimate of a win probability and a
probabilistic preference over possible moves for any given board
position (i.e., the intuition component). However, the network’s 20

residual layers are able to capture much more than a human player
can intuitively grasp.

In addition, the clever use of MCTS guarantees an improvement
over the use of the network alone by averaging future possible
positions [2] (i.e., the analysis component), making the agent par-
ticularly successful against both people and automated agents. Due
to its strong connections to Chess player’s behavioral theories, in
this work, we adapt the state-of-the-art Alpha Zero algorithm to
better align with human-like style and level.

Since Alpha Zero’s implementation and the trained networks are
not in the public domain, we use the popular Leela-chess-zero (de-
noted LCO, lczero.org) implementation which mimics Alpha Zero’s
solution and has already achieved super-human chess capability.
LCO0 ranks among the very best chess programs today in interna-
tional competitions.

3 APPROACH

The Alpha-zero agent consists of two main components:

(1) A trained neural network that provides for each board posi-
tion an estimation of the win probability (value head), and a
probability for selecting each of the possible moves (policy
head).

(2) A modified MCTS algorithm, which incorporates exploration
and stochasticity to improve the initial policy.

As noted before, Alpha zero achieves super-human level play.
Degrading this level of play may be achieved by modifying one
of the above components. We chose to focus on modifying the
second component , i.e. the MCTS algorithm, and maintain the
(near-)optimal trained neural network. Note that modifying the
neural network for a specific level of play requires complex and
time-consuming training, whereas our approach allows for flexible
adjustment for multiple levels of play.

We leverage the three main hyper-parameters used in the Alpha-
zero implementation:

(1) Temperature, 7: controls the selection of moves. When
7 = 0, the move with the highest visit count (N;) is selected.
Increasing 7 increases the probability of selecting moves
with lower visit counts, i.e. less promising moves. Formally,
the move selection probability is given by:
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Exploration parameter, cpyc: A constant that controls
the trade-off between exploration and exploitation. Formally,
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for a state-action pair s, a (s-board position, a-move);

V2p N(s. b)

PUCT(S, a) = Q(S, a) + CpuctP(S, a)m

Where Q is the mean action value (the average game result
across current simulations that took action a) and P are the
prior probabilities (as provided by the policy head of the
network).

We denote the MCTS hyper-parameters as © = (7, t, Cpuct)-

These role of the aforementioned hyper-parameters in the MCTS
algorithm is analogous to the human behavioral aspects discussed
in section 2.2. Specifically, 7 is a technical interpretation of the
“analysis” behavioral component: the higher 7 is, the more “con-
fused” the agent is with respect to the relative quality of each move
derived via the MCTS. t is a technical interpretation of the “intu-
ition” behavioral component: the higher ¢ is - the more likely are
less-promising branches of the MCTS tree to be explored. cpyct,
the exploration parameter, can be seen as an enabler of both the
intuition and analysis, since it emphasizes the exploration term
which is controlled by the previous hyper-parameters.

We propose Algorithm 1 for tuning © given a desired level of
play k. Let D be a set of (b, m, e), where b is a board position, m
is the associated move and e is the elo level of the player. In this
work, we use the publicly available Lichess database 2.

First, we extract from D a subset Dy = {(b,m, e) : |e — x| < Ae}
where 2Ae is the elo bin size. Next, we tune the hyper-parameters
using numerical gradient descent [21] as described in Algorithm 1.

Algorithm 1 MCTS hyper-parameter tuning

1: repeat
2: VO «0
3: for each d € Dy do
P N
P(N),M « MCTS(©,d.b)
0—dm

L T2
{ « cross-entropy(o, P(N))
VO += numerical gradients(¢)
8: 0 +=aVe
9: until convergence(VO)

NP

In words, in Lines 3 and 4 we run the MCTS algorithm given
each sample d € D, board position as the root node. The MCTS
output is a list of possible moves M, ordered by their associated

probabilities, P(—NS, which are derived from their respective visit
counts (N). Next, in Line 5, we translate the given move made by
the player, d.m, into a one-hot vector, 0 with respect to M. Namely,
6 =[0,...,0,1,0, ...,0] where the 1 is at the index corresponding

to the to the position of d.m in M. Then, the loss, ¢, is calculated

by the cross-entropy between ¢ and IT(N—_; in Line 6. In order to
learn the MCTS hyper-parameters using stochastic gradient descent
the gradients of the ¢ with respect to each hyper-parameter are
needed. However, since the MCTS is non-differentiable, we resort
to calculating numerical gradients in Line 7. This is accomplished

2database.lichess.org
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by executing the MCTS algorithm twice for each hyper-parameter:
Vx € {r,t, Cpuct, @, €}.

ot (o), P(N)|© + 8.x) — £((0), P(N)|©)
00.x [6.x|

Where §.x is a small perturbation of the given hyper-parameter.

After the numerical gradients were accumulated in VO, in Line
8, we update the MCTS hyper-parameters following a standard
gradient descent update rule with & as a learning rate. The process
is repeated until convergence, namely VO = 0.

4 EVALUATION

In order to evaluate our approach we first train four chess playing
agents using Algorithm 1 for different levels of play. These four
agents are evaluated using three experimental settings:

e Experiment 1: We perform a round-robin tournament be-
tween the agents to verify the agents’ relative elo.

e Experiment 2: We test the agents’ elo scores using a the
popular chess level assessment system Elometer, especially
designed for human players.

e Experiment 3: With the help of a chess expert and trainer,
we again evaluate the elo levels of our agents. Furthermore,
we perform a first-of-its-kind Turing test-inspired human
study in which the expert has to distinguish between human
and automated chess players.

4.1 Setup

Based on the United States Chess Federation (USCF) chess rating
classes® we chose to focus on the following four classes:

(1) Class D (elo 1200-1300): a strong social player

(2) Class B (elo 1600-1700): above average tournament player

(3) Expert (elo 2100-2200): national expert or candidate master.

(4) Grandmaster (elo 2500-2600): the highest international chess
level class.

Using a month’s games from the lichess database*, we obtained
24,784,600 chess games, of which 2,772,575 games and 81,825,092
board position for Class D players, 4,481,130 games and 150,695,607
board position for Class B players, 1,026,468 games and 38,194,547
board position for Expert players and 44,585 games and 1,702,024
board position for Grandmaster players. These games were used to
train four separate agents using Algorithm 1.

For the following experiments, the four agents were evaluated
“as-is” without further tuning of their hyper-parameters.

4.2 Experiment 1:

In this experiment, we seek to verify the agents’ elo ratings by
performing a round-robin tournament between them. Note that
the elo rating system further serves as a predictor of the outcome
of a match between every two players. Specifically, following the
common practice of chess tournaments, a win counts as +1 point,
whereas a draw counts as +0.5 point for both players. It is therefor
predicted that in a match between two players of with relative elo

Shttps://bit.ly/2Vyl9Hi
4https:// database lichess.org/standard/lichess_db_standard_rated_2018-10.pgn.bz2
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difference of AElo = elo; —elo, the expectation of the points earned
by first player would be

1
1 + 10AElo/400

In our setting, we expect the tournament to result in the win-
rates provided in Table 1.

D B Expert | GM
D - 0.091 | 0.006 | 0.001
B 0.909 - 0.053 | 0.006
Expert | 0.994 | 0.946 - 0.091
GM 0.999 | 0.994 | 0.909 -

Table 1: The expected win-rate between the four agents
given their trained elo.

We used the CuteChess® to perform the experiment. Each pair
of agents played 200 games against one another. The observed
win-rate is reported in Table 2.

D B Expert | GM
D - 0.105 | 0.002 | 0.000
B 0.895 - 0.039 | 0.005
Expert | 0.998 | 0.961 - 0.065
GM 1.000 | 0.995 | 0.935 -

Table 2: The observed win-rate between the four agents
given their trained elo.

Comparing the theoretical win-rate distribution with the em-
pirical results using Pearson’s Chi-Square test [17] shows that the
difference is attributed to chance with high probability (p < 0.05).

4.3 Experiment 2:

In Experiment 1, we show that the empirical win-rate in a tour-
nament between the agents follows the theoretical one. However,
recall that the win-rate depends only on the AElo, namely — the
relative strength of each player. If we were to adjust the elo of all
agents by a constant level, for example reduce all agent’s level by
200 elo points, the resulting theoretical win-rate table would be the
same.

To address this shortcoming, we perform the following experi-
ment: We evaluate each of our agents independently via Elometer
system which is especially designed for human player’s level as-
sessment. The Elometer presents 76 board positions to each agent,
one after the other, requesting a move to be selected. From the
selected moves, Elometer returns an estimate of the elo level. Table
3 summarizes the results.

4.4 Experiment 3:

Experiments 1 and 2 provide us with elo estimations for our agents.
However, our task was not only to control the elo level of the agents
but, and more importantly, bring about human play style.

Shttps://cutechess.com/

Trained elo | Est. elo
D 1200-1300 1316
B 1600-1700 1727
Expert 2100-2200 2108
GM 2500-2600 2546

Table 3: The EloMeter assessments compared to the trained
elos of our agents.

To evaluate the playing style of our agents we perform a Turing-
inspired human study. The experiment is designed to examine
whether our agents can “fool” an expert trying to identify “non-
human” play style. To that end, we use 3 types of players: 1) Human
(extracted from the lichess dataset); 2) Typical agent (we used the
leading Shredder program®, which claims to be capable of adjusting
its elo level in a human-like manner); and 3) Our agent, which we
will denote as the Adjustable Chess Engine (ACE).

We created four sets of games each corresponding to one of
the four elo levels discussed above. Each set consists of 18 games,
divided equally into groups of 6 games, played between the same
type of players: human-human, Shredder-Shredder and Ace-Ace.
Each set of games was given to the chess expert who was asked to
classify each game according to the style of play as either “human”
or “computer”. Note that the expert was informed of the elo level
of the set.

The results of our chess-expert’s classification are: 1) all of Shred-
der’s games were classified as “Machine”; 2) 1/2 of the human games
were classified as “Human” whereas the other 1/2 were classified as
“Machine”; 3) 1/2 of our agent’s games were classified as “Machine”
and the other 1/2 were classified as “Human”.

This experiment validated our assumption that our agent’s play
style is more similar to that of human chess players than the style
of other chess agents, and in fact is indistinguishable from human
players of varying levels.

5 CONCLUSION

In this paper we introduced a novel approach for training adaptable
chess agents. We demonstrated that approach has the flexibility
to match varying levels of human chess players. Moreover, our
agent has the distinctive advantage of being able to play at a human
style making it more suitable as a training partner for human chess
players.

In future work we plan to perform more experiments, such as
having a chess expert play games against unknown adversary (hu-
man or agent). Additionally, we plan to develop an interpolation
function of our hyper-parameters, ©, to enable a more fine grained
level of play.

We also plan to deploy our agent in a local chess club, which
will enable us to explore aspects such as modelling risk aversion of
players, as well as varying playing styles in the different parts of
the game: opening, mid-game and end-game.

®https://www.shredderchess.com/
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